INVARIANT SOLUTIONS OF THE NAVIER - STOKES EQUATIONS

V. Q. Bytev UDC 532.516

We examine certain invariant solutions of the Navier— Stokes equations. We prove theorems
concerning the existence of solutions of boundary-value problems of the corresponding S/H
systems.

1. It is well known that the widest group of continuous transformations admitting the system of
Navier — Stokes equations

uy+uVa—Au+Vp=20
Veu=0

is generated by the following operators:
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where ¢, Ji (t) (k=1, 2, 3) are arbitrary functions of the variable t.

2. In studyling invariant solutions the most essential element is their interpretation. It is found that
from the group G, generated by the operators (1.1), it is possible to select a subgroup G, such that an
arbitrary invariant solution constructed on its subgroups describes a flow with g free boundary. The follow-
ing theorem, proved in {1}, is valid.

THEOREM 1. If uk= (pk (X, t) and N are invariant manifolds relative to one and the same subgroup H
of the group Gyy, then even the conditions on the free boundary

(—pl +2D)VF =0, F,+u.VF=0
are also invariant relative to this same subgroup [N : F (%, t) =0 is the equation of the free boundary].

Therefore, from the point of view of applications to problems with a free boundary, there is interest
in classifying dissimilar subgroups of the first, second, and thirdorders of the group Gy~ We write out
separately a basis of the group Gy,

3 9 a
Xos Xpt, 2, Xy = -2, Y=l + 5o (k=1,2,9)

Following a known method [2], Ovsyannikov constructed optimal systems of subgroups of the first,
second, and third orders. In constructing optimal systems use was made of the fact that they are all solv-
able except for one, namely, (X, Xy3, X3;) . Therefore, if we know an optimal system fg.1» We can extend

each (s-1)-dimensional subalgebra of the §_; system to a subalgebra of dimensionality s and eliminate
similar subalgebras of this dimensionality to obtain an optimal system §g of s~dimensional subalgebras [3].
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This was done in [1] in the case of two independent variables. As is to be expected, the majority of invariant
solutions are already known and have been thoroughly studied [4]. We shall have something to say concern-
ing some new invariant solutions later.

3. At the present time several examples are known of exact solutions describing the motion of a lig-
uid with free boundaries (see, for example [1, 4, 5]). We give yet another example, a fairly simple one,
of a flow with a free boundary.

Suppose that a viscous incompressible liquid occupies initially a spherical layer (Ryy = r = Ryg) and
has a given radial speed. The motion is assumed to be spherically symmetric. The case Ry,=> was con-
sidered by Rayleigh [6]. From the Navier —Stokes equations, written in a spherical coordinate system, we
obtain equations for vy and p, which are to be solved in the domain @ ; {t >0, Ry(t) sSr=Ry t)}. Herer=
Ry ,(t) are, respectively, the outer and inner boundaries of the spherical layer, which are unknown before-
hand. Integrating the continuity equation, we obtain

v, =179 (l) (3.1)
Equating the stress vector on the free boundary to zero, we obtain the following boundary conditions:
T =—p —4vp [1* =0 for r= Ryyt) (3.2)
From the kinematic condition on the free boundary
AR, (2)/dt =@ [ R 2 (P) (3.3)
we obtain the volume conservation law
R3() — R2(t) = Ry®* — By’ =0a*>0 (3.4)

Further,
dp | dt = (do | dRy) (@R, df)

so that the momentum equation reduces to

dq) . ¢ Bg Rzz st R2 322
TdR; ~ 2R; [1 S &S R ] 4v— [1 + = Rlz] (3-5)
To Eg. (3.5) we must adjoin the initial condition
P (fy) = O (3.6)
The Cauchy problem (3.5), (3.6) may be solved explicitly:
By(l) B Rai)
9={D— S gexp|— \ 1| dRz}exp{ S faRs}
Ko Rso Ry
. 1 ‘ R2 RZZ R23 _ R2 Rzz
I= 2Rz[1+T+ e T Rf‘]’ g:lw[i—le—{— R,ZJ

To values of &,> 0 there corresponds a divergence of the spherical layer while to values of ;< 0
there corresponds a compression of this layer. It is clear that for a divergence of the spherical layer
there always exlsts an Ry,=R,, such that ¢(R«) =0. We show that the time of divergence of the spherléal
layer to the critical radius R is infinite. Indeed, let R, = R 4, then the first term on the right side of
Eq. (3.5) tends to zero and the second tends towards some constant quantity. Therefore ¢ =O (R +—R,) and
the integral

B o
2 _ .
) = 3.7
diverges for R,—R,. Similarly, in the case of compression there always exists an Ry =R/, such that
¢(R ) =0, and the time of compression of the spherical layer to the critical radius R', is infinite.

We consider yet another problem connected with a spherical layer. The statement of the problem
differs from that of the preceding one in that we assume the difference of the pressures on the inner and
outer boundaries of the spherical layer to be nonzero and, in fact, a function of the time. As before, the
volume conservation law is satisfied, the only change being that in the equation for determining ¢. The
latter equation and the initial condition which ¢ satisfies are
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| P (Ry) = Dy (3.9)

where @ = fy(t) —f, &); f4(t) is the pressure on the inner boundary of the spherical layer, f,(t) is the pres-
sure on the outer boundary, and r =R () are, respectively, the outer and inner boundaries. Suppose, for
definiteness, that ¥ = ¢ > 0; then, using differential inequalities of Chaplygin type, we obtain the following
result, analogous to that in [5]. With compression of the spherical layer with a positive pressure drop o
and &, < 0, an Ry =R , always exists suchthat ¢ (Rx) = 0 and the time for compression to the critical radius
R, is finite, Following this, the divergence of the spherical layer commences. Here, in contrast to the
previous case, the critical radius does not exist.

4. The structure of Infinitely dimensional Lie groups has been insufficiently studied and, inparticular,
it is not known how to enumerate the dissimilar subgroups of a given group. It will therefore be necessary
to limit ourselves merely to the construction of several examples of the use of operators belonging to the
group G.

We consider a three-parameter subgroup — (T, T,, T3) . The functions i entering the operators
Ty are fixed but arbitrary. Solutions of the Navier —Stokes equations are to be found in the following form:

Uy =z (6 + A (D), uy= 2P, () + B (1), us =295 (1) + C(?)
= — Yy [z (@ + 02V 2° (B + $ho®) + x5 (0 + D) 4 7 (2)

Solutions of this type were employed by Hopf to construct an example of a nonunique solution of a
Cauchy problem for the Navier —Stokes equations in the class of solutions with a linear growth of velocities
and a quadratic pressure [7]. However, Hopf's example was, in fact, constructed for the Euler equations.
We give an example of nonuniqueness of a solution of a Cauchy problem, which essentially takes into ac-
count the presence of the viscous terms in the Navier —Stokes equations. To this end we consider the sub-
group (planar case) (T;+T,, Sy, wherein ¢; =1 and 3, is a fixed function of the variable t and of class C°.
The invariants of this subgroup are the following;:

Ji=8=ux, — Pz, Jy=t, J3=uy, Ju=u; — 29 ()
Therefore we seek the solution in the form

Uy = U (E’ t)v Uy = x1¢21(t) + v (g’ 3) (4“1)
Po=Yoz® $a" () §s (8) — zza" () + 71 €, 1)

It should be noted that the given solution is partially invariant. Substituting Eqs. (4.1) intothe Navier—
Stokes equations, we obtain, after eliminating the function vy (£, t), the heat conduction equation

oW W

v g2

W= tn)u—gr, r={d e

From the continuity equation it follows that v= ,u. Suppose that ¥, C? is such that Py (0) =2h,*(0) =
¥," (0) =0, then the problem, generalizing the known problem concerning the diffusion of a vortex layer, with
the initial velocity field uy =u (x,), u, =0, has an infinite set of solutions in the class of functions increasing
linearly with respect to one of the spatial coordinates. We note that the known solution of the problem con-
cerning the diffusion of a vortex layer, in which uy; =0, uy=u (%, t), is obtained when y, = 0.

We give yet another example of the use of operators of the full group G. We consider the subgroup
(Xy9+8) (planar case). It is necessary to seek the invariant solution in the following form:

Up=1u(r,t), uwe=v(t), p=—0H)04+7(ri
Suppose that u = 0; we can then pose the following boundary-value problem. We are given the annular
sector £ : {R,2 =r=R,0<B=0=<ac«2r},where r=R, 2 are solid walls. We are required to describe

the motion of a viscous incompressible liquid, of Poiseuille flow type, in a curvilinear tube under the ac-
tion of a nonstationary pressure drop. The equations and boundary conditions are the following:
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v lr=R1,2 = () (20 (B1) = v () = 0)

The solution of this problem is as follows:

v(rt)=v () + Jai(®)wi ()

wi(r) =Y, MBy) Sy M) — Ty MRy Y1 (A7)
J and Y are Bessel functions of the first and second kinds, and
i
a;(f) = e S Foe™itd

0
P )+ 2L

The F; are the coefficients in the Fourier series expansion of'the function F with respect to the w;. The
characteristic numbers Aj are obtained from the relations

Y, (7\'132) Jy (7%31) —J (hiRz) Y, (MRl) =0

5. We consider the two-parameter subgroup — (kd/8p—3/96, 9/0t) . We seek an invariant solu-
tion of the Navier —Stokes equations in the form

u.=u(r,2, u=v(rz, u,=uw(,:z), =—k04p(r, 2

We assume that in the plane § =const we are given a domain Q with a boundary 89 C** %, where
©Q does not contain the coordinate origin. By rotating the domain © through an angle 8 less than 27 /k about
the z axis, we obtain a curvilinear tube of constant section. Let R be the distance of a tube section to the
coordinate origin. We wish to describe the motion of the viscous incompressible liquid inside the tube
under the action of a constant pressure drop at its ends.

We write the Navier — Stokes equations for the vector function V with components u, v, w in a cylindri-
cal coordinate system

u-%?—+w—22—~—?:~—%ﬁl+v[i—aﬁr—(r—g:—>+%—%] (5.1)
u-%——]—wg—: f}-:%+v{%£;(f%—>+%}*%} ‘ (5-2)
et o () 2] o

2 (1) + 5 () =0 (5.4)

Along with the Eqgs. (5.1)- (5.4) we have the boundary condition
Via=10 (5-5)

To solve the boundary-value problem (5.1)-(5.5) we introduce the functional space H({}) whose ele-
ments are vector functions V(r, z) defined in €. The space H(f)is obtained by a completion of the set J(%)
of all infinitely differentiable, finite in Q, solenoidal vector functions in the norm induced by the scalar
product '

[u,v] = SVu-erdrdz
Q

Let &(®;, &, ®;) E H (). We multiply Egs. (6.1)-(5.3) respectively by &, &,, ®;, add, and integrate

over :
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S(vVV-VCD —V-V.VO) rdrdz = 5[% D, — 2 (O — D) — 5 (@ + CD2U)] rdrdz (5.6)
9] 9] X -

The integral identity (5.6) serves as the basis for determining a generalized solution of the problem
(5.1)-(5.5). We prove the following theorem.

THEOREM 2. The problem (5.1)~(5.5) has at least one generalized solution.

The proof of the theorem stating that a solution of the problem (5.1)-(5.5) exists is analogous to the
prcof of the theorem concerning the existence of a solution of the nonlinear stationary interior boundary-
value problem presented in [8]. Application of the method used in [8] is justified by the availability of the
a priori estimate

[V feron << RC (Q) (5.7)

The estimate (5.7) is obtained from Eq. (5.6) by putting & =V and making the change of variable

r=R+§
6. Consider the subgroup (kd/8z—98/86, 8/8) . Relative to this subgroup an invariant solution
has the form
ur:u(ra§)1 U«a=lv(",§), u’z:w(r7§)1 P=P("»§)y E=Z+k6

Substituting these expressions into the Navier —Stokes equations, written in a cylindrical coordinate
system, we obtain

N L
() e[ R e ( £) e B 2] e
(i) B[ ) (e )]

5 (rt) - (oo 728) = 0 6.4)

To the Egs. (6.1)~(6.4) we adjoin the boundary condition
Vien = AL, & , {6.5)
and the condition of periodicity in £ with the period [
Vit +-0)=V(,8 (6.6)

The domain @ inthe variables r and £ represents the part of the plane bounded by the lines & =Q,
[, r=R, and the curve r = r ({) where r varies over the interval Ry=r = R,. The vector A (r, &) has the
components {0, qr, q} s {O, qaRy, at , {0, 0, 0}. The given spiral solution can be interpreted as the solution
of the problem concerning "the spiral of Archimedes.”

THEOREM 3. The problem (6.1)-(6.6) has at least one generalized solution.

We consider in the domain Q the set fI(Sl,l) of infinitely differentiable solenoidal vectors such thatthey
are periodic in { with period / and vanish near the boundary 8. Let H(R, ) be the Hilbert space with the
norm

lufan = {{ 5 (%)2 + ( a;;’ )2} rdrdg (6.7)

Q =1

The space H(S, [} Is obtalned by a completion of H(Q, /) {n the norm (6.7). Let & =H{®,l). We multi-
ply Egs. (6.1)-(6.3) respectively by ¢, ¢, @5, add, and Integrate over Q

- V{-ig* ((P1 'g“z“ — P —Z%) + 91 ',:I;“’i— P ':iz‘]}‘ rdrdg (6.8)

{7V v — V- V.V rards — §{¢1 P

v
r
%4
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An arbitrary solution of the system (6.1)-(6.4) satisfies the integral identity (6.8) independently of the
boundary conditions. '

DEFINITION. A function V(r, &) is called a generalized solution of the problem (6.1)-(6.6) if there
exists a solenoidal vector function a & WZ1 (2, ) such that a|50=A, V-a =u & H(%, 1); the identity (6.8)
is satisfied for arbitrary & < H (Q,1).

We can show that Eg. (6.8) is equivalent to an operator equation of the form u=Fu+ f with a com-
pletely continuous operator F, analogous to the procedure followed in [8]. Therefore the proof of the
theorem concerning the existence of a solution reduces to obtaining an a priori estimate of llull in the
space H (%, 1).

We remark that to obtain such an estimate is not a trivial matter. This is connected with the fact
that the domain Q in the variables r, 6, and z is unbounded. Therefore the estimate of the Dirichlet integral
obtained in [8] for the interior stationary problem is not applicable here. However in the variables r and £
the domain Q is bounded, a fact which erables us to obtain an a priori estimate. To derive this a priori
estimate we put V=a+u, & =u, u (uy, Uy, Ug) in the identity (6.8). Then we obtain the following equation:

v[u,u} 4 via,u] — {u,u,u} — {a,u,u} — {u,a,u} — {a,a,u} =

1 .
== S‘;."‘ (@11q® + 1098y — aglily — ay*uy) rdrdg —

—wv S—:—; (ui® + w®) rdrdf —w §—§2— (@ -+ azuz) rdrdf —

— 9k § ' (ulﬂ %‘g o 321 )rdrd§ - 2v1s§ (ul "g’g —u, %g) rdrdt
where
[p,u] = SVu-VurdrdE, S{E ( Ch > ( -+ —f—j-) (%‘g—)z]}rdrdg
9] i=1
{u,v,w} = §u-v-Vwrdrd§, v (_:T’ -—’:— —5%—, —395..)
But since

e e - 2o G o G| = (= - () ()]

then, applying Hopf's lemma [9] with € = »/2 (1+C), where C is the constant from Poincare's equation [8],
we obtain the required estimate

w0,y <v7Co (2,2, )

7. We consider the subgroup (kd/0z—98/89 + 8/9p, &8ty . An invariant solution relative to this
subgroup has the form
Uy =u(r8), to=v(rb, w,=wr, p=k2+prk) E=2+Kk

Substituting these expressions in the Navier —Stokes equations, written in a cylindrical coordinate sys-
tem, we obtain

S R (R TCE S = e B
e e e[ E) O R e R -] 0
R A e &
(ru) + = (kv +rw) =0 (7.4)
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The "no slip" condition yields the boundary condition
Vs =0 {7.5)
We seek a solution periodic in ¢ with period [
Vit +D)=V@h (7.6)
The problem posed may be interpreted as the flow of a viscous incompressible liquid inside a coil.
Proceeding in the manne;r we did in the previous section, we obtain the integral identity

(o 22—y 2 v] 2 (005 —cpg—";—‘g—)Jr'—};(cp,_uwzv)]}rdrd& —

(7.7)
— (V- v-v@raraz = v (v vorarat + + \ogaraz,

0 Q Q
D (py, 9o, P = H (2,])

The identity (7.7) serves to determine the generalized solution of the problem (7.1)~(7.6).
THEOREM 4. The problem (7.1)-(7.6) has at least one generalized solution,

As before, it is sufficient to obtain an a priori estimate of | V“H(Q,l)' To obtain it we put = V.
in Eq. (7.7). We note that the integral

%V-V-VVrdrdE:O
P

therefore the following equation is valid:

SR () (S o+

v [ ) Z (G S e = Y

Q

We write the second integral on the left side of this equation in the form
J bl S () () v

Cancelling off the common terms, we obtain the required estimate

[V ean <EC(Q)

We remark that a unigueness theorem holds for problems (5.1)-(5.5) and (7.1)-(7.6), but only for
additional restrictions on the quantity k.

In conclusion the author thanks V. V. Pukhnachev for a discussion of the results and for his advice.
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