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We examine certain invariant solutions of the Navier-stokes equations. We prove theorems 
concerning the existence of solutions of boundary-value problems of the corresponding S/H 

systems. 

i. It is well known that the widest group of continuous transformations admitting the system of 
Navier - Stoke s equations 

is generated by the following opera tors :  

u t + u . V u - -  Au-t -  V p  = 0 
V . u - - O  

X o  = -~Y  , S = ~ (t 

0 0 , 0 
~r~ = ~ (t) ~ + ~ '  (t) ~ --  x~% (t)-oT (~ = t, 2, 3) 

Z = 2 t _ ~ t  + i (x~ o _ u e  0 ) o 
k=1 ~ ~ -- 2p-@--p (I.i) 

where ~, ~b k (t) (k=l, 2, 3) are arbitrary functions of the variable t. 

2. In studying invariant solutions the most essential element is their interpretation. It is found that 
from the group G, generated by the operators (i.i), it is possible to select a subgroup G11 such that an 
arbitrary invariant solution constructed on its subgroups describes a flow with a free boundary. The follow- 
ing theorem, proved in [i], is valid. 

THEOREM i. If u k= ~k (x, t) and N are invariant manifolds relative to one and the same subgroup H 

of the group G11 , then even the conditions on the free boundary 

(-- pI  + 2D) VF = 0, F, + u .  VF = 0 

are  also invariant relat ive to this same subgroup iN : F (x, t) =0 is the equation of the free boundary].  

Therefore ,  f rom the point of view of applications to problems with a free boundary, there  is interest  
in classifying d i ss imi la r  subgroups of the f irst ,  second, and th i rdo rde r s  of the group G W We wri te  out 
separate ly  a basis  of the group Gll 

0 0 0 
X0, X ~ , Z , X ~ :  0-~- ~ ,  Y k = t ~ + ~  (k=i ,2,3)  

Following a known method [2], Ovsyannlkov constructed optimal sys tems of subgroups of the first ,  
second, and th i rd  orders .  In construct ing optimal sys tems  use was made of the fact that they are  all solv-  
able except for one, namely, (X12, X23 , X3t } . Therefore ,  if we know an optimal sys tem 0s_t, we can extend 
each ( s -D-d imens iona l  subalgebra  of the 0s_ 1 sys tem to a subalgebra of dimensionali ty s and eliminate 
s imi la r  subalgebras of this dimensionali ty to obtain an optimal sys tem 0 s of s -dimensional  subalgebras [3]. 
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This was done in [1] in the case of two Independent var iables .  As is to be expected, the majori ty  of invariant 
solutions are already known and have been thoroughly studied [4]. We shall have something to say concern-  
ing some new invarlant solutions later.  

3. At the present  t ime severa l  examples are  known of exact solutions describing the motion of a liq- 
uid with free boundaries (see, for example [1, 4, 5]). We give yet another example, a fa i r ly  simple one, 
of a flow with a f ree boundary. 

Suppose that a viscous incompress ib le  liquid occupies initially a spherical  layer  (R20 -< r -- RI0 ) and 
has a given radial  speed. The motion is assumed to be spher ical ly  symmetr ic .  The case Rio = ~ was con- 
s idered by Rayleigh [6]. F r o m  the Nav ie r -S tokes  equations, writ ten in a spherical  coordinate system, we 
obtain equations for Vr and p, which are  to be solved in the domain ~2 : {t > 0, R 2 (t) - r_< R 1 (t)}. Here r = 
R1,2(t ) are,  respect ively,  the outer and inner boundaries of the spherical  layer ,  which are unknown before-  
hand. Integrating the continuity equation, we obtain 

Vr =- r-2q 9 (t) (3.1) 

Equating the s t r e s s  vec tor  on the free boundary to zero,  we obtain the following boundary conditions: 

Trr-------P--4~q)/r a = O" for r - ~  Bl,~(t) (3.2) 

F rom the kinematic condition on the free boundary 

dRl,~ (t) / dt  = r / Bl,~ 2 (t) 

we obtain the volume conservat ion law 

R1 a (t) - -  R2  8 (t) = B~o a - -  R2o a - ~  a a > 0 

Further ,  
dcp / dt = (dq~ / dry)  (dR2 / dr) 

(3.3) 

(3.4) 

so that the  momentum equation reduces to 

R2 R~ ~ ] 

To Eq. (3,5) we must adjoin the initial condition 

q9 (R~o) = dPo (3.6) 

The Cauehy problem (3.5), (3.6) may be solved explicitly: 

Rdt) R~(t) I~2(~) 

~" t R2 
" ~ a  RI~ --/~I----TJ ' g R1 --R-TJ 

To values of +0 > 0 there  cor responds  a divergence of the spherical  layer  while to values of +0 < 0 
the re  cor responds  a compress ion  of this layer.  It is c lear  that for  a divergence of the spherical  l a y e r  
the re  always exists an R 2 = R , ,  such that go(R.) =0. We show that the t ime of divergence of the spherical  
layer  to the cr i t ical  radius R .  is infinite. Indeed, let R 2 -~ R . ,  then the f i rs t  t e r m  on the right side of 
Eq. (3.5) tends to zero  and the second tends towards some constant quantity. Therefore  r =O ( R , - R 2 )  and 

the integral 

R~(t) 

R22 d R  ~ o ~ = t ( 3 . 7 )  

diverges for R 2 ~ R  , .  Similarly,  in the case of compress ion  there  always exists an R 2 =R' . ,  such that 
go(Rg) =O, and the t ime of compress ion  of the spherical  layer  to the cr i t ical  radius R' ,  is infinite. 

We consider  yet another problem connected with a spherical  layer.  The statement of the problem 
differs f rom that of the preceding one in that we assume the difference of the p r e s su re s  on the inner and 
outer boundaries of the spherical  layer  to be nonzero and, in fact, a function of the time. As before,  the 
volume conservat ion law is satisfied, the only change being that in the equation for determining go. The 
lat ter  equation and the initial condition which go sat isf ies are  
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t 1 ,R,Rr 
, ~ j  = 0 (3 .8 )  R1 - -  R2 

(R~0) = qb0 (3.9) 

where ~ = f t  (t) - f 2  (t); f t(t)  is the p r e s s u r e  on the inner boundary of the spherical  layer ,  f2(t) is the p r e s -  
sure  on the outer boundary, and r=R1,  2 (t) are, respect ively,  the outer and inner boundaries.  Suppose, for 
definiteness, that ~ >- c > 0; then, using differential inequalities of Chaplygin type, we obtain the following 
result ,  analogous to that  in [5]. With compress ion  of the spherical  layer  with a positive p r e s s u r e  drop r 
and ~0 < 0, an R2=R , always exists s u c h t h a t ~ ( R . ) =  0 a n d t h e t i m e  for compress ion  t o t h e  cr i t ical  radius 
R ,  is finite. Following this,  the divergence of the spherical  layer  commences .  Here, in contrast  to the 
previous case, the cr i t ical  radius does not exist. 

4. The s t ruc ture  of infinitely dimensional Lie groups has been insufficiently studied and, inpar t ieu lar ,  
it is not known how to enumerate  the d iss imi la r  subgroups of a given group. It will therefore  be necessa ry  
to l imit ourselves  mere ly  to the construct ion of several  examples of the use of opera tors  belonging to the 
group G. 

We consider  a t h r e e - p a r a m e t e r  subgroup - <T1, T2, T3) . The functions Sk entering the opera tors  
T k are  fixed but a rb i t ra ry .  Solutions of the N a v i e r -  Stokes equations are  to be found in the following form: 

~t i = xi~ l ( t ) §  (t), u2= x ~ ( t ) §  u ~ =  xa~).~(t) § C(t) 
P = - ~/~ [x~ ~ (W + % ~  + x?  (W + ~?) + x~* (,~' § ~p?)l § 7 (t) 

Solutions of this type were employed by Hopf to construct  an example of a nonunique solution of a 
Cauchy problem for  the Nav ie r -S tokes  equations in the class  of solutions with a l inear growth of velocit ies 
and a quadrat ic  p r e s su re  [7]. However, Hopf's example was, in fact, constructed for the Euler equations. 
We give an example of nonuniqueness of a solution of a Cauchy problem, which essential ly takes into ac-  
count the presence  of the viscous t e r m s  in the N a v i e r - S t o k e s  equations. To this end we consider  the sub- 
group (planar case) <T t +T2, S) , wherein r 1 = 1 and ~z is a fixed function of the var iable  t and of class C 3. 
The invariants of this subgroup are the following: 

drl : ~ ~ X2 - -  ~2X1'  J 2  = t ,  ] 3  = /$1' J ~  = ~2 - -  X1~2' ( t )  

There fo re  we seek the solution in the form 

u i-= ~(~, t), tb 2= xi%'(t ) §  v(~, t) (4,1) 
p = ~/~x? %" (t) ~ (t) - x~x~%"(t) + 7 (~, t) 

It should be noted that the given solution is partially invariant. Substituting Eqs. (4.1) intothe Navier- 
Stokes equations, we obtain, after eliminating the function 7 (~, t), the heat conduction equation 

oW 02W 
0r 0~2 

4 

F r o m  the continuity equation it follows that v = ~2 u. Suppose that ~2 ~ C3 is such that r (0) =r  ---- 
92" (0) =0, then the problem, general izing the known problem concerning the diffusion of a vor tex  layer ,  with 
the initial velocity field u 1 =u (x2), u 2 =0, has an infinite set of solutions in the class  of functions increasing 
l inear ly  with respect  to one of the spatial coordinates.  We note that the known solution of the problem con- 
cerning the diffusion of a vor tex  layer,  in which u 2 -= 0, u 1 =u (x2, t), is obtained when ~2 ~ 0. 

We give yet another example of the use of opera tors  of the full group G. We consider  the subgroup 
(X12 +S) (planar case). It is necessa ry  to seek the invariant solution in the following form:  

ur=u(r , t ) ,  ue=v(r , t ) ,  p=- - cp ( t )O+7(r , t )  

Suppose that u = 0; we can then pose the following boundary-value problem. We are  given the annular 
sec tor  ~2:{R 2_< r_< R1,0 < fi-< 0-<c~< 2 ~ } , w h e r e r = R t 2 a r e  solid walls. We are required  to descr ibe  
the motion of a viscous incompress ib le  liquid, of Poiseuil le  flow type, in a curvi l inear  tube under the ac-  
tion of a nonstat ionary p r e s s u r e  drop. The equations and boundary conditions are the following: 
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0 r  r 

Ov q~ (t) 02v i Ov v 
O t  = r 2c ~r 2 2c r Or r z 

v I+=, = vo (r) 
v [,=Ri, 2 = 0 (v0 (~a) = "o (R2) = 0) 

The  solut ion of th is  p r o b l e m  is as  fo l lows:  
co 

v (r, t) = v0 (r) + ~ ai (t) w~ (r) 

w~ (r) = Y1 (~iR2) i i  (~r) - -  ] i  (E~R2) Yi (Eir) 

J and Y a r e  B e s s e l  funct ions  of the  f i r s t  and second  kinds ,  and 

t 

2 t P 2 t 
al (t) = e -xi ~ Fi (t) e -x~ dt 

0 

F =  ~ - - ~ ( r v o ( r )  -4- r 

The F i a r e  the  coef f ic ien t s  in the F o u r i e r  s e r i e s  expans ion  o f t h e  funct ion F with r e s p e c t  to  the w i. The 
c h a r a c t e r i s t i c  n u m b e r s  X i a r e  obtained f r o m  the  r e l a t ions  

5. We c o n s i d e r  the  t w o - p a r a m e t e r  subgroup - < k O / 0 p - O / O 0 ,  O / 0 t )  . We seek  an invar lan t  so lu -  
t ion  of  the N a v i e r - S t o k e s  equat ions  in the  f o r m  

u r = u ( r , z ) ,  u o = v ( r , z ) ,  u z = w ( r , z ) ,  p = - - k O + p ( r , z )  

We a s s u m e  that  in the plane 0 =cons t  we a re  given a domain  ~2 with a boundary  0~2E C 2+ a ,  whe re  
does not contain  the coo rd ina t e  or igin .  By ro ta t ing  the domain  ~2 th rough  an angle fi l e s s  than 2~/k  about 

the  z axis ,  we obtain a c u r v i l i n e a r  tube of cons tant  sec t ion.  Let  R be the  d i s tance  of a tube sec t ion  to  the 
coo rd ina t e  or igin.  We wish  to  d e s c r i b e  the  mot ion of the  v i s cous  i n c o m p r e s s i b l e  l iquid ins ide the tube 
unde r  the ac t ion of a cons tan t  p r e s s u r e  drop at i ts ends. 

We wr i t e  the N a v i e r -  Stokes equat ions  fo r  the v e c t o r  funct ion V with componen ts  u, v, w in a c y l i n d r i -  
cal  coo rd ina t e  s y s t e m  

u ~ + w  o~ ~ ~ + ~L o~ r -~ Oz~ -~ (5.1) 

0, 0, u~ k i i  0 ( o , )  0~, , ]  
u--gT-~ +w-gT-~ + - 7 " - = - 7  - + v  -7--3g-~ r'37-~ + o~'~ ~ (5.2) 

Ow Ow Op r i 0 / Ow \ , 02w 3 
u + w - o T  = - w -  + L-7- r ) * J (5.3) 

Le t  
over ~2: 

OrO (ru) _}...~o (rw) = 0 (5.4) 

Along with the  Eqs.  (5.1)-  (5.4) we have the  boundary  condi t ion 

V 10n = 0 (5.5) 

To  solve  the  b o u n d a r y - v a l u e  p r o b l e m  (5.1)-(5.5) we in t roduce  the funct ional  space  H(~) whose  e le -  
ments  a r e  v e c t o r  funct ions  V(r ,  z) defined in ~2. The  space  H(&2)is obtained by a comple t ion  of the set  ~(~2) 
of all  inf ini tely d i f fe ren t iab le ,  f inite in ~2, so lenoida l  v e c t o r  funct ions  in the  n o r m  induced by the  s c a l a r  
p roduc t  

[u. vl = I Vu . Vvrdrdz 

@(@1, @2, @3) ~ H {~2). We mul t ip ly  Eqs.  (5.1)-(5.3) r e s p e c t i v e l y  by @1, @2, @3, add, and in t eg ra te  
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(5.6) 

The in tegra l  identity (5.6) s e r v e s  as the bas i s  fo r  de termining  a genera l ized  solution of the p rob lem 
(5.1)-(5.5). We prove  the following theo rem.  

THEOREM 2. T h e p r o b l e m  (5.1)-(5.5) has at leas t  one genera l ized  solution. 

The proof  of the t h e o r e m  stat ing that  a solution of the p r o b l e m  (5.1)-(5.5) exis ts  is analogous to the 
p reo f  of the t h e o r e m  concerning the exis tence  of a solution of the nonlinear  s t a t ionary  in t e r io r  boundary-  
value p r o b l e m  p re sen t ed  in [8]. Application of the method used in [8] is just if ied by the avai labi l i ty  of the 
a p r i o r i  e s t ima te  

II V tl~a') < kC (e') (5.7) 

The e s t ima te  (5.7) is obtained f r o m  Eq. (5.6) by putting ~ =-- V and making the change of va r i ab l e  

r = B + ~  
6. Consider  the subgroup ( k O / O z - a / a 0 ,  a / a t )  . R e l a t i v e t o  this  subgroup an invar iant  solution 

has the f o r m  

u ~ = u ( r , ~ ) ,  uo=:v(r,~), u z=w(r,~), p = p ( r , ~ ) ,  ~ = z 4 - k O  

Substituting these  exp re s s ions  into the N a v i e r - S t o k e s  equations,  wr i t t en  In a cyl indr ica l  coordinate  
sys t em,  we obtain 

au au v~ ap :~: v -~-'r ~ r-~-r} + i + - (6.1) u ~ + kv ~t- w a~ r Or a~'- r~ a~ r~ 

u---g~r + kv+w ---~-+ r = r a~ + ~  . (6.2) L r  Or \ ~ + l +  - 5 ~  + rZ a~ 

(6.3) 

0 + ru)) = 0 (6.4) 0 ( r u ) + ~ ( k v  Or 

To the Eqs. (6,1)-(6.4) we adjoin the boundary condition 

V 10a = A (r, ~) (6.5) 

and the condition of pe r iod ic i ty  in ~ with the per iod  l 

V(r,~ + l) = V (r, ~) (6.6) 

The domain ~2 in the variables r and ~ represents the part of the plane bounded by the lines ~ =0, 
l, r =R 2 and the curve r = r (~) where r varies over the interval R I-< r -< R 2. The vector A (r, ~) has the 
components {0, qr, q), {0, qRl, q}, {0, 0, 0}. The given spiral solution can be interpreted as the solution 
of the problem concerning "the spiral of Archimedes." 

THEOREM 3. The problem (6ol)-(6.6) has at least one generalized solution. 

We consider in the domain ~2 the set I:I(~2,l) of infinitely dlfferentiable solenoidal vectors such that they 
are periodic in ~ with period I and vanish near the boundary 0~. Let H(~, l) be the Hilbert space with the 
norm 

l [u~(a '0= ~,2=-~=l[-TF-r ] + l ~ )  f rdrd~ (6.7) 

The  space  H(~2, l) is obtained by a complet ion of I:I(~2, l) in the no rm (6.7). Let ~ ~ H ( ~ , I ) ~  We mul t i -  
ply Eqs. (6.1)-(6.3) r e spec t i ve ly  by gvl, q~2, ~3, add, and in tegra te  over  gt 
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An a r b i t r a r y  solution of the s y s t e m  (6.1)-(6.4) sa t i s f i es  the in tegral  identity (6.8) independently of the 
boundary  conditions. 

DEFINITION. A function V(r,  ~) is cal led a genera l ized  solution of the p rob lem (6.1)-(6.6) if t he re  
ex is t s  a solenoidal  vec t o r  function a ~ W21 (s l) such that  aj3~2 =A, V - a  - u ~ H ( s  the identity (6.8) 
is sa t i s f ied  for  a r b i t r a r y  @ ~ H (s  

We can show that  Eq. (6.8) is equivalent to an ope ra to r  equation of the f o r m  u = Fu + f  with a c o m -  
ple te ly  continuous ope ra to r  F, analogous to the p r o c e d u r e  followed in [8]. T h e r e f o r e  the proof  of the 
t h e o r e m  concerning the ex i s tence  of a solution reduces  to obtaining an a p r i o r i  e s t ima te  of ]] u]l in the 
space  H (s l). 

We r e m a r k  that to  obtain such an es t ima te  is not a t r iv i a l  ma t te r .  This  is connected with the fact  
that  the domain ~ in the v a r i a b l e s  r ,  0, and z is unbounded. T h e r e f o r e  the e s t ima te  of the Dir ichlet  in tegral  
obtained in [8] for  the in te r io r  s t a t ionary  p r o b l e m  is not appl icable here .  However  in the v a r i a b l e s  r and 
the domain s is bounded, a fact  which enables  us to obtain an a p r i o r i  es t imate .  To der ive  this  a p r i o r i  
e s t ima te  we put V = a + u ,  @ - u ,  u (ul, u 2, u3) in the identity (6.8). Then we obtain the following equation: 

v[u ,u ]  q- ~ in, u] --  {u, u, u } - -  {a, u, u } - -  {u, a , u } - -  {a, a,u} = 

- -  v f i (u , _}_ u ~) rdrd~ " (a~u, § a,u,)rdrd~ - -  

where  

{u ,v ,w}=  u.v.Vwrdrd~, V or ' 1. o~ ' 

But since 

then, applying Hopf ' s  l e m m a  [9] with e = v / 2  (1+C),  where  C is the constant  f r o m  P o i n c a r e ' s  equation [8], 
we obtain the r equ i red  e s t ima te  

u I[-(~,o ~< ~-~Co (~, a, k) 

7. We cons ide r  the subgroup ( k ~ / a z - D / 0 0  + ~ / O p ,  ~ / 0 t ) .  An invar lant  solution re la t ive  to  this 

subgroup has the  f o r m  

u~ = u (r, ~), u0----v(r,~), %----w(r,}), p = k- lz  + p (r, ~), ~ ---- z + kO 

Substituting these  exp res s ions  in the N a v i e r - S t o k e s  equations, wr i t ten  in a cyl indr ical  coordinate  s y s -  

t em,  we obtain 

ou ( + k v . ~ w )  Ou _ ~ v 2  = Op f t  o I ouh ( k2) o~-u ~ - +  ~ -  r - - ~ - + ~ [ - ; ' - w k r ~  -] + ~ + ~ -  ~2 
2k Ov u7  (7.1) 
r2 o~, J 

u ~ §  k v §  + 7  = r o~ + ~ l~ ~ 7~-~] + ~ + - ~ / ~ -  + 1.~ at 
(7.2) 

, ~ a--C + -~- + ~ [-7--g;- ~r-.-~-) + + 1.~ / 0~, .i 
(7.3) 

(ru) + - - ~  (kv + rw) = 0 (7.4) 
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The "no slip" condiiion yields the boundary  condition 

V [~ = 0 (7.5) 

We seek a solution per iod ic  in ~ with per iod  l 

v (r, ~ + z) = v (r,~) (7.6) 

The p r o b l e m  posed  may be in te rp re ted  as the flow of a v i scous  i ncompres s ib l e  liquid inside a coil. 

P roceed ing  in the manner  we did in the previous  section,  we obtain the in tegral  identity 

~_{ uv v~ r 2k I Ov o u \  ,. t ,r~ u 

-- I V.V.Vrl)rdrd~= - - ,  f Vu d - ~  fq~rdrd~, (7.7) 

The identi ty (7.7) s e r v e s  to de te rmine  the genera l ized  solution of the p rob lem (7.1)-(7.6). 

THEOREM 4. The p r o b l e m  (7.1)-(7.6) has at leas t  one genera l i zed  solution. 

As before ,  it is sufficient to obtain an a p r i o r i  e s t ima te  of Ii V[IH(~, /) .  To obtain it we put 4~ ~- V 
in Eq. (7.7). We note that  the in tegral  

I V .  V. V V r d r d ~  =- 0 

t h e r e f o r e  the following equation is val id:  

~ k ~1 -~ -  ~ - W ) J  rd~d~ = ~d~d~ 

We write the second integral on the left side of this equation in the form 

Caneelllng off the common terms, we obtain the required estimate 

II v I1-(~,l) ~< k-lC (~) 

We r e m a r k  that  a uniqueness  t h e o r e m  holds for  p r o b l e m s  (5.1)-(5.5) and (7.1)-(7.6), but only for  
additional r e s t r i c t i ons  on the quantity k. 

In conclusion the author thanks V. V. Pukhnachev for  a d iscuss ion of the r e su l t s  and for  his advice. 
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